常氏引理
在内容都已经梳理完毕的情况下,把整个证明过程写成一篇格式像模像样的论文,其实并不需要耗费太长时间。
一切都算是水到渠成。
到投稿到哪里。
这個证明虽然对物质世界没有什么直接的“用处”。
但理论数学本来也不怎么在乎这个。
真要太功利了,那帮搞纯数学的人没准还要低看你两眼。
总的来说,他的文章中包含两个部分。
除了“对于任意一组高维数据x,一定存在一个映射关系,使x映射成为一组局部简单的欧氏空间中的数据y”这个主结论以外,常浩南还对里奇流进行了一定的延伸和扩展。
该理论认为,如果在流形上给定一个度量,再用里奇流发展方程加以改进,流形的曲率也会随之伸展。
而常浩南在证明自己主要猜想的过程中,顺便证明了利用里奇流可以完成一系列的拓扑手术,用以构造几何结构,把不规则的流形变化为规则的流形。
在此之前丘成桐、李伟光和理查德·汉密尔顿已经在这一方向上进行了十几年的研究。
实际上,常浩南在之前近一个月的整理过程中,也没少参照这三位大神的论文。
而那个关于里奇流的猜想本身,就是丘成桐提出的。
这要是在工程界,像这种没办法证伪的假设,早就被当成工具用起来了。
但在理论数学界,显然不能这么玩。
因此,常浩南的证明相当于给予了微分几何领域的学者们两个早就想用,但一直没办法用的工具。
根据数学界的惯例,不出意外的话,它们大概会被捏到一起,并命名为“常氏引理”。
至于这个常氏引理有什么用……
直观来说,或许可以推动证明庞加莱猜想。
也就是“每个单连通的3维流形都同胚于3维球面”。
而证明庞加莱猜想本身……
常浩南前些天自然也尝试过。
只是以眼下3级系统给他提供的理论水平,显然还不足以让他构思出一个“完整且可行”的思路来。
常浩南在文章最后也是这么写的:
这两项证明在微分几何领域具备更深刻的意义,但由于本文的篇幅原因,我将在日后进行更加详细的说明……
如果把庞加莱猜想比喻成一个装满珍宝,但却被封死了的宝箱,那么,如今常浩南手中的工具,只能把它撬开一个缝隙。
而这篇论文中的某些部分,就是从缝隙中溢出来的些许宝藏。
这样的宝藏,对于理论数学界来说,自然是足够直接考虑所谓“四大神刊”了——
《数学年刊》、《数学新进展》、《美国数学会杂志》以及上面提到过的《数学学报》。
(请)
常氏引理
倒也没什么值得选择困难症的。
1999年这会,四大神刊里面只有数学年刊接受和发行电子版论文,而且前面提到过的那几位微分几何大神也都跟这份期刊的关系密切。
于是……
选择文件,上传!
……
对于常浩南来说,这只能算是他科研路上的一个小插曲。
至少现在,他还不准备把理论数学作为自己的主攻方向。
因此,在完成投稿之后,他就把精力转移到了准备国庆典礼上面。
毕竟,也就是这几天的功夫了。
虽然不需要-->>常浩南着手做什么,但参加典礼的飞机几乎有三分之一都装着他参与或者主持设计的发动机,郑良群已经不止一次发来邀请,叫他去津门wq区机场走访视察一圈。